Motion planning for multiple robots with multi-mode operations via disjunctive graphs

نویسندگان

  • Chi-Fang Lin
  • Wen-Hsiang Tsai
چکیده

A new approach to motion planning for multiple robots with multi-mode operations is proposed in this paper. Although sharing a common workspace, the robots are assumed to perform periodical tasks independently. The goal is to schedule the motion trajectories of the robots so as to avoid collisions among them. Rather than assigning the robots with different priorities and planning safe motion for only one robot at a time, as is done in most previous studies, an efficient method is developed that can simultaneously generate collision-free motions for the robots with or without priority assignment. Being regarded as a type of job-shop scheduling, the problem is reduced to that of finding a minimaximal path in a disjunctive graph and solved by an extension of the Balas algorithm. The superiority of this approach is demonstrated with various robot operation requirements, including “non-priority”, “with-priority”, and “multicycle” operation modes. Some techniques for speeding up the scheduling process are also presented. The planning results can be described by Gantt charts and executed by a simple “stop-and-go” control scheme. Simulation results on different robot operation modes are also presented to show the feasibility of the proposed approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Designing Solvable Graphs for Multiple Moving Agents

Solvable Graphs (also known as Reachable Graphs) are types of graphs that any arrangement of a specified number of agents located on the graph’s vertices can be reached from any initial arrangement through agents’ moves along the graph’s edges, while avoiding deadlocks (interceptions). In this paper, the properties of Solvable Graphs are investigated, and a new concept in multi agent moti...

متن کامل

Mobile Robot Online Motion Planning Using Generalized Voronoi Graphs

In this paper, a new online robot motion planner is developed for systematically exploring unknown environ¬ments by intelligent mobile robots in real-time applications. The algorithm takes advantage of sensory data to find an obstacle-free start-to-goal path. It does so by online calculation of the Generalized Voronoi Graph (GVG) of the free space, and utilizing a combination of depth-first an...

متن کامل

A Disjunctive Programming Approach for Motion Planning of Mobile Router Networks

In this paper we develop a framework based on disjunctive programming for motion planning of robotic networks. Although the methodology presented in this paper can be applied to general motion planning problems we focus on coordinating a team of mobile routers to maintain connectivity between a fixed base station and a mobile user within a walled environment. This connectivity management proble...

متن کامل

Direct Optimal Motion Planning for Omni-directional Mobile Robots under Limitation on Velocity and Acceleration

This paper describes a low computational direct approach for optimal motion planning and obstacle avoidance of Omni-directional mobile robots within velocity and acceleration constraints on the robot motion. The main purpose of this problem is the minimization of a quadratic cost function while limitation on velocity and acceleration of robot is considered and collision with any obstacle in the...

متن کامل

Interactive Language-Based Task Library Instruction and Management for Single and Multiple Robots

Robots acquire behaviors to perform tasks, in general by being programmed, or occasionally by being instructed through demonstrations. In this thesis, we address the challenge of providing task behaviors to a robot through language instructions and interactions. We consider robots equipped with built-in motion and perception primitives with their functionality known to the user. We contribute I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Robotica

دوره 9  شماره 

صفحات  -

تاریخ انتشار 1991